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Abstract 
 

Circuit breakers (price limits and trading halts) are regulatory instruments aiming to reduce severe price 
volatility and provide markets with a cooling-off period. This paper investigates the impact of price limits on volatility 
dynamics in the Egyptian Stock Exchange. A variety of mean and variance specifications in GARCH type models 
(GARCH, GJR, and APARCH) and four different error distributions (Normal, Student-t, GED, and Skewed-t) are 
utilized. Results from examining a split sample suggest significant changes in the time varying volatility process. 
Results prior to the imposition of price limits exhibit leptokurtosis; yet show no sign of the widely cited leverage effect.  
Results after the imposition of price limits display both leptokurtosis and the leverage effect.   
 

نمذجة تذبذبات أسعار البورصة المصرية قبل وبعد تطبيق نظام الحدود 
 السعرية 

   اسكنــدر توما 
   ماجد سوريال

 

 الملخص
 

. . الحـدود السعرية وإيقاف التداول هي أدوات نظامية، تهدف إلى الحد من التذبذبات الحادة في الأسعار، وتنعم معها الأسواق بفترة من الهدوء                     الحـدود السعرية وإيقاف التداول هي أدوات نظامية، تهدف إلى الحد من التذبذبات الحادة في الأسعار، وتنعم معها الأسواق بفترة من الهدوء                      
وقد تم استخدام مجموعة متنوعة من توصيفات الوسط الحسابي         وقد تم استخدام مجموعة متنوعة من توصيفات الوسط الحسابي         . . قة من أثر الحدود السعرية على حركة التذبذب في البورصة المصرية          قة من أثر الحدود السعرية على حركة التذبذب في البورصة المصرية          تـتحقق هذه الور   تـتحقق هذه الور   

، ونموذج الانحدار الذاتي المشروط     ، ونموذج الانحدار الذاتي المشروط     GJR، نموذج جلوستن جاناثان ورانكل      ، نموذج جلوستن جاناثان ورانكل      GARCHوالتبايـن لـنماذج الانحدار الذاتي المعمم المشروط بتذبذبات التباين           والتبايـن لـنماذج الانحدار الذاتي المعمم المشروط بتذبذبات التباين           
، ، student، توزيع ستودنت ت  ، توزيع ستودنت ت  normal، وباستخدام أربعة توزيعات مختلفة للأخطاء التوزيع الطبيعي         ، وباستخدام أربعة توزيعات مختلفة للأخطاء التوزيع الطبيعي         APARCHبات التبايـن غـير متناسـق القوى         بات التبايـن غـير متناسـق القوى         بـتذبذ بـتذبذ 

لتذبذبات لتذبذبات تشير النتائج المحققة من اختبار عينة مشتقة إلى معنوية التغيرات في عملية ا            تشير النتائج المحققة من اختبار عينة مشتقة إلى معنوية التغيرات في عملية ا            . . skewed-t، وتوزيع ت غير المتماثل      ، وتوزيع ت غير المتماثل      GEDالتوزيع المعمم للأخطاء    التوزيع المعمم للأخطاء    
، بينما لم تظهر آثار كبيرة لأثر الرافعة ، بينما لم تظهر آثار كبيرة لأثر الرافعة leptokurtosisكما أن النتائج السابقة على تطبيق حدود سعرية تثبت وجود أثر الذيول السميكة كما أن النتائج السابقة على تطبيق حدود سعرية تثبت وجود أثر الذيول السميكة . . بتوقيـتات مخـتلفة   بتوقيـتات مخـتلفة   

leverage effectبينما أوضحت النتائج التالية لتطبيق الحدود السعرية ظهور كلا الأثرين بينما أوضحت النتائج التالية لتطبيق الحدود السعرية ظهور كلا الأثرين  . . 
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Introduction 

 
  Circuit breakers (price limits and trading halts)(1), with all their multi-dimensional complexities, have started to 
interest economists within the last decade or so.  Unfortunately, there is no agreement on whether circuit breakers are 
effective tools or not.  Also, to date, most of the existing literature do not aid in resolving this issue.  
  

“Our ignorance is unfortunate because circuit breakers can have very significant effects upon markets” (Harris, 
1998). Whether these effects are positive or negative (2) is debatable. Regulators clearly need to know more about these 
effects if they are to make optimal decisions on whether or not to apply circuit breakers to their stock exchanges. And if 
they do apply them, they need to know which ones are the most effective. 
 

Many financial asset markets have daily price limits on individual assets. U.S. futures markets are perhaps the 
best-known example, followed by emerging equities markets.(3) Advocates of limits claim that they reduce price 
volatility in two ways:              (a) Firstly, they give participants a “time out” or cooling-off period to digest information 
and help markets avoid unwanted price fluctuations; and  (b) Secondly, the limits literally set a ceiling and a floor for 
the price to move within a trading day.  Critics, on the other hand, assert that limits may have several adverse effects on 
the market.  Empirical literature criticizing price limits has concentrated on three different hypotheses: (a) Volatility 
spillover; (b) Delayed price discovery; and (c) The trading interference hypotheses. 
 

This article examines the effects of price limits on the Egyptian Stock Exchange (ESE)(4) where a tight 
symmetric 5% daily limit was imposed during most of the period between 1997-2001.  Unlike other studies, this paper 
does not research on the effectiveness of price limits in the ESE.  Rather, it tests their impact on the time-varying market 
volatility process. Data used include daily adjusted closing prices for two major market indices that allow the 
comparison of the time-varying volatility process during the limit time period with an earlier no-limit time period, 
January 3, 1993 through January 31, 1997. A variety of GARCH models (GARCH, APARCH, JGR) is used with 
different density specifications (Normal, Student-t, Skewed Student-t, and GED) to examine empirically whether 
estimated volatility changes significantly as a result of the imposition of symmetric price limits.   

 
After examining a split sample, results suggest significant changes in the time- varying volatility process. Empirical 

results, prior to the imposition of price limits, exhibit leptokurtosis yet show no sign of the widely cited leverage effect.  
Following the imposition of price limits, results display both leptokurtosis and the leverage effect.  Economically, this 
indicates that regulatory and/or structural shifts in the market lead to a different conditional volatility model structure.   

 
Literature 

 
While there is a growing literature on the effectiveness of circuit breaker mechanisms,(5) this paper focuses on 

the theoretical and empirical studies of financial time series. Financial time series, unlike other series, usually exhibit a 
set of peculiar characteristics.  Firstly, volatility clustering is often observed, i.e., large changes tend to be followed by 
large changes and small changes tend to be followed by small changes; (see Mandelbrot, 1963 for early evidence).  
Secondly, financial data often exhibit leptokurtosis.  In other words, the distribution of their returns tends to be fat-
tailed, i.e., the kurtosis exceeds the kurtosis of a standard Gaussian distribution (see Mandelbrot, op. cit; or Fama, 
1965). Moreover, the so-called “leverage effect,” initially noted by Black (1976), refers to the fact that changes in stock 
prices tend to be negatively correlated with changes in volatility, i.e., volatility is higher after negative shocks than after 
positive shocks of the same magnitude. 

 
 Over the past two decades, enormous effort has been devoted to modeling and forecasting the movement of 
stock returns and other financial time series. Seminal work in this area of research may be attributed to Engle (1982), 
who introduced the standard Autoregressive Conditional Heteroskedasticity (ARCH) model. Engle’s process proposes 

                                                 
(1) According to Harris (1998): “All circuit breakers limit trading activity in some way.  Trading halts stop trading  when prices have moved, or will 

imminently move, by some pre-specified amount.  Trading resumes after some time interval.  Price Limits require all trade prices to be within a 
certain range.” 

(2) Empirically, some researchers have concluded that circuit breakers reduce volatility (Ma, Rao, and Sears (1989a; 1989b).  Others find that volatility 
increases (Mecagni and Sourial , 1999; Lee, Ready and  Seguin, 1994).   Still, others find that trading restrictions have little effect in the long run 
(Lauterbach and Ben-Zion, 1993;  Santoni and Liu, 1993; Overdahl and McMillan, 1997.) 

(3) For example: Austria, Belgium, Egypt, France, Italy, Japan, Korea, Malaysia, Mexico, Netherlands, Spain, Switzerland, Taiwan, Thailand and 
Turkey among others. 

(4) Mecagni and Sourial (1999) using a normal and symmetric GARCH-in mean specification tested for the same effect.  Their results provide 
evidence that price limits negatively impacted the market by: reducing the welfare of investors, reducing efficiency and increasing market 
volatility.  

(5) For a detailed literature survey, see Harris (1998). 
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to model time-varying conditional volatility using past innovations to estimate the variance of the series.  Empirical 
evidence shows that high ARCH orders have to be selected in order to catch the dynamics of the conditional variance. 
This argument gave rise to the Generalized ARCH (GARCH) model of Bollerslev (1986), which introduces the time-
varying volatility process as a function of both past disturbances and past volatility.  Today, the ARCH and GARCH 
literature have grown immensely and its applications have expanded from stock returns to interest rates, foreign 
exchange, inflation and so on. Excellent survey papers by Bollerslev, Chou, and Kroner (1992), as well as, Bollerslev, 
Engle and Nelson (1994) cite more than 200 papers on this subject. The ability to estimate and forecast financial market 
volatility has expanded even further because of its importance in the portfolio selection and asset management 
processes. This is in addition to its importance in the pricing of primary and derivative assets.     

 
Although most researchers agree that volatility is predictable in many asset markets, they differ on how this 

volatility predictability should be modeled within an ARCH/GARCH context.  As a result, a variety of new extensions 
were produced, some of which were motivated by pure theory, whereas others were simply empirical trial-and-error 
suggestions. The most interesting of these approaches targeted the structural form of the GARCH model by allowing for 
“asymmetries” to capture the aforementioned “leverage effect.” Among the most widely applied models are the 
Exponential GARCH (EGARCH) of Nelson (1991); the so-called (GJR) of Glosten, Jagannathan and Runkle (1993); 
and the Asymmetric Power ARCH (APARCH) of Ding, Granger and Engle (1993).(6)   
 

Another area heavily researched in the GARCH domain is the method of estimation.  GARCH models are 
estimated using a Maximum Likelihood (ML) approach.(7)  The logic of ML is to interpret the density as a function of 
the parameters set, conditional on a set of sample outcomes. This function is called the likelihood function. As noted 
earlier, financial time-series often exhibit non-normality patterns, i.e., excess kurtosis and skewness. Bollerslev and 
Wooldridge (1992) propose a Quasi Maximum Likelihood (QML) method that is robust to departures from normality. 
Indeed Weiss (1986) and Bollerslev and Wooldridge (1992) show that under the normality assumption, the QML 
estimator is consistent if the conditional mean and the conditional variance are correctly specified. This estimator, 
however, is inefficient, with the degree of inefficiency increasing as departure from normality increases. This penalty 
imposed for not knowing the true conditional density results in failure to capture the fat-tails property of high-frequency 
financial time series (Engle and Gonzalez-Rivera, 1991). Consequently, this has led to the use of non-normal 
distributions to better model excessive third and fourth moments.   

 
It is expected that excess kurtosis and skewness displayed by the residuals of conditional heteroscedasticity 

models will be reduced when a more appropriate distribution is used. Bollerslev (1987); Baillie and Bollerslev (1989); 
Kaiser (1996); and Beine, Laurent, and Lecourt (2000), among others, use Student-t distribution while Nelson (1991) 
and Kaiser (op. cit) suggest the Generalized Exponential Distribution (GED). Other propositions include mixture 
distributions such as the normal-lognormal (Hsieh, 1989) or the Bernoulli-normal (Vlaar and Palm, 1993). Finally, to 
better capture skewness, Fernandez and Steel (1998) and Lambert and Laurent (2000; 2001) use a skewed student-t 
distribution.  

 
 

                                                 
(6) Other famous asymmetric GARCH models include the Threshold GARCH (TGARCH) of Zakoian (1994), the Quadratic GARCH (QGARCH) of 

Sentana (1995), the Volatility Switching ARCH (VS-ARCH) of Fornari and Mele (1996), and the Logistic Smooth Transition ARCH (LST-ARCH) 
of Gonzales-Rivera (1996) and Hagerud (1996). 

(7) As an alternative to ML and Quasi Maximum Likelihood (QML) estimation, GARCH models can also be  estimated directly with Generalized 
Method of Moments (GMM).  This was suggested and implemented by Glosten, Jagannathan and Runkle (1993).  
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Empirical Methodology 
 
Models 
 

Let the adjusted closing price of a market index at time t be denoted by Pt. Stock market returns, Rt, through out 
this paper is defined as continuously compounded or (log) returns at time t. Rt measured as the natural log difference in 
the closing market index between two consecutive trading days {ln {|Pt1| / |Pt-1| } = ln (Pt) - ln (Pt-1)} and are assumed to 
follow the AR(p)-process: 

 

 tit

p

i
it RR εϕϕ ++= −

=
∑

1
0      (1) 

 
where εt denotes a discrete-time stochastic process taking the form:  
 
            ttt z σε =                      (2) 
 
where zt ~ iid(0,1), and σt is the conditional variance of return at time t, whose dynamics are to be modeled using 
ARCH/GARCH type specifications.   
  

Bollerslev’s (1986)(8)  GARCH model assumes that the conditional variance is generated by: 
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where γ,α, and β are non-negative constants.  
 
For the GARCH process to be defined, it is required that α > 0. 
 

The first asymmetric GARCH type model is the GJR model of Glosten, Jagannathan and Runkle (1993)(9).   Its 
generalized version is given as: 
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where, 
−
tS  is an indicator function that takes the value of one when 1−tε < 0 and zero otherwise.  It may be seen clearly 

that this model assumes the impact of 
2
tε  on the conditional variance 

2
tσ is different when tε is positive or negative.  

In sum, it assumes that negative shocks have a higher impact than positive ones. 
  

Ding, Granger, and Engle (1993) propose the Asymmetric Power ARCH (APARCH).  The APARCH model 
may be expressed as: 
 

 ( ) ∑∑
=

−−−
=

+−+=
p

j
jtjitiit

q

i
it

11
0

δδδ σβετεαγσ                               (5) 

 
where, 0>δ  and –1 < iτ  < 1 (i = 1,…,q).  This model’s strength arises from the fact that it couples the flexibility of a 
varying exponent with the asymmetry coefficient (to take the “leverage effect” into account).    

 

                                                 
(8) It is straightforward to show that Bollerslev’s (1986) GARCH model is based on the infinite ARCH model introduced by Engle (1982). 
(9) The Threshold GARCH (TGARCH) model of Zakoian (1994) is very similar to the GJR but models the conditional standard deviation instead of 

the conditional variance. 
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To summarize, the shocks (news) of the aforementioned asymmetric volatility models capture the leverage 
effect by allowing either the slope of the two sides of the news impact curve(10) to differ or the center of the news curve 
to locate at a point where it−ε  is positive. In the standard GARCH model, this curve is a quadratic function centered on 

it−ε  = 0.  GJR captures asymmetry because its news impact curve has a steeper slope on its negative side than on its 
positive one.  Finally, APARCH detects the asymmetry by allowing its news impact curve to be centered at a positive 

it−ε .(11)   
 

Estimation Methodology and Density Assumptions 
 

To estimate the parameters of these models, a maximum likelihood (ML) approach is used. The innovations zt 
is assumed to be following a conditional distribution. Hence,      a log-likelihood function is considered for 
maximization using a standard numerical method. Again, it may be expected that excess kurtosis and skewness 
displayed by the residuals of GARCH models are reduced when a more appropriate distribution is used. The next few 
paragraphs will describe the different densities used in this paper and provide their log-likelihood functions. 
  

The normal distribution is the most widely used when estimating GARCH models.  Given both the mean 
equation in Equation 1, the variance equation for any of the models presented in Equations 3, 4 and 5, and the stochastic 
process of the innovations given by Equation 2, the log-likelihood function for the standard normal distribution is given 
by: 
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where T is the number of observations. 
  
For a Student-t distribution, the log-likelihood is: 
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Furthermore, the GED log-likelihood function of a normalized random error is: 
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(10) Engle and Ng (1993) performed a comparison among the standard GARCH model and the EGARCH, GJR, and APARCH. They suggest an 

increasing metric by which to analyze the effect of news on conditional heteroskedasticity. Holding constant the information dated at t-2, they 
examined the implied relation between  εt-1 and σt.  They call this curve, with all lagged conditional variances evaluated at the level of the 
unconditional variance of the stock return, the news impact curve because it relates past return shocks (news) to current volatility.  This curve 
measures how new information is incorporated into volatility estimates using the various proposed models.  

(11) For a more detailed discussion, see Engle and Ng (1993) and for methods of extrapolating news impact curves for a wide variety of models, see 
Hentschel (1995).  
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The previous two densities account for fat tails, but do not take into account asymmetries. Lambert and Laurent 
(2001) applied and extended the skewed Student-t density proposed by Fernandez and Steel (1998) to a GARCH 
framework: 
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See Lambert and Laurent (2001) for further details. 

 
Specification Tests  
 
 To estimate the unknown parameters of the models, iterative numerical methods with the help of software, are 
required. These procedures are usually time-consuming, especially if the code must be written, and if the model in 
question explains the data badly, the estimation might not converge. This is why specification tests play a crucial role. 
They investigate whether or not a certain model might have been the data-generating process of    a time series.  
Following the recommendations of Wooldridge (1991) and Hagerud (1997), a “bottom-up” strategy is used when 
performing specification tests. In other words, specifying the conditional mean is the initial step. Once the conditional 
mean is formulated and estimated satisfactorily, tests for the conditional variance specification are initiated. 
  

When attempting to specify the conditional mean, only possible autocorrelations in the returns are tested for.(12)  
To test for autocorrelation, the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) are 
employed, in addition to a test developed by Richardson and Smith (1994),(13) which is a robust version of the standard 
Box-Pierce (1970) procedure.  If ∧

iρ , is the estimated autocorrelation between the returns at time t and t-i, then the (RS) 
is formulated as: 

 

 ∑
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(12) Other studies have tested for “day-of-the-week effects” and the possibility of the conditional variance as the explanatory variable of the returns.  

These specifications are not considered in this study.  
(13) Cited in Hagerud (1997). 
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where ic is an adjustment factor for heteroskedasticity and is calculated as:  
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where 2
tr is the demeaned return at time t.  Under the null of no autocorrelation, this test is distributed 2χ  with k 

degrees of freedom.  If the null cannot be rejected, it can be deduced that the specification of the conditional mean in (1) 
is equal to a constant plus a residual.  On the other hand, if the null is rejected, an AR(1) model is estimated on the 
series.  Furthermore, to ensure that this AR(1) specification has captured all the autocorrelation, Equation 10 is applied 
on the estimated residuals of the AR(1) process.  The residual testing using Equation 10 is compared to a 

2χ distribution with k-1 degrees of freedom.  If the null cannot be rejected, it is concluded that returns are generated by 
an AR(1) model.  If the null is rejected, the testing continues with higher- order AR models until the null cannot be 
rejected. 
  

Once the conditional mean equation has been specified, tests for the presence of heteroskedasticity are 
performed.  The most widely cited and used test for this purpose is the LM test of no ARCH of Engle (1982)(14).  The 
test procedure is to run an OLS regression on Equation 1 after having calculated the “correct” lags from the Richardson 
and Smith test in Equation 10 and save the residuals. Then, regress the squared residuals on a constant and p lags and 
test T*R2 on a 2χ distribution with p degrees of freedom.   
  

If the null of no ARCH(q) cannot be rejected, the investigation continues with tests for asymmetric GARCH. 
The fact that negative return shocks cause more volatility than positive return shocks of the same magnitude, tells us 
that the standard GARCH model will underpredict the amount of volatility following bad news and overpredict it 
following good news. These observations suggest testing for whether it is possible to predict the squared normalized 
residuals by variables observed in the past, which are not included in the volatility model being used.  If these variables 
can predict the squared normalized residuals, then the variance model is misspecified. The sign bias test proposed by 
Engle and Ng (1993) considers a dummy variable −

− itS , which takes the value of one when 
it −ε  is negative and zero 

otherwise. This test examines the impact of positive and negative return shocks on volatility not predicted by the model 
under consideration. The general derived form of the test using a slightly different notation than Engle and Ng (op. cit) 
is: 

 
 

 
 
 

 taattt uzz ++= ϑϑν 00
2                   (12) 

 

where,  tz 0  is a k x 1 vector of explanatory variables of the model hypothesized under the null,(15) 
0ϑ is the k x 1 vector 

of parameters under the null.  
aϑ  is a m x 1 vector of additional parameters corresponding to atz , which is a m x 1 

vector of missing explanatory variables.  ttt 0/σεν ≡ , where, t0σ  is the conditional standard deviation vector 

estimated using the hypothesized model under the null and finally, tu  is the residual.   
 

Theoretically, the right hand side of Equation 12 should have no explanatory power at all. To actually perform 

the sign bias test atz  is replaced by −
−itS  and an actual regression takes the following form: 

 

 tttt ezbSa +′++= −
− 01

2 βν            (13) 

                                                 
(14) Engle’s (1982) LM test of no ARCH is standard in any statistical or econometric software package. 
(15) Usually a symmetric GARCH(1,1). 
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where, a and b  are constant parameters, β is a constant parameter vector, and te  is the residual.  The sign bias test is 
defined as the t-statistic for the coefficient b in regression Equation 13.   
  

Furthermore, according to Engle and Ng (1993), the sign bias test can also be used on raw data to explore the 
nature of the time-varying volatility in a time series, without first imposing a volatility model.  In this case, tε , and tν  
would be defined as: 

 
 µε −= tt R                  (14a) 

 
s

t
t

ε
ν =        (14b) 

 
where, µ  and s are the unconditional mean and standard deviation of the time series tR , respectively. If b from 
Equation 13 is statistically significant, then it is justifiable to use Models 4 and 5. 
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Data 
 

The behavior of the ESE stock returns was analyzed using two major daily aggregate indices.(16) These indices 
have different composition and therefore worthwhile looking at in order to assess the sensitivity of the empirical results.  
The indices are: 

 
• The Hermes Financial Index (HFI) started on July 1, 1992.  The HFI is the benchmark of the Egyptian market 

and is used to monitor the overall market overall performance.  HFI tracks the movement of the most active 
Egyptian stocks traded on the ESE.  Although HFI is broad-based, it limits its constituents only to companies 
that have genuine liquidity in the market, as opposed to those companies that trade only a few sporadic pre-
arranged trades. The HFI is capitalization weighted for registered stocks that are openly traded,(17)  

 
• The Egyptian Financial Group Index (EFGI) started on January 3, 1993, and is capitalization-weighted for 

registered stocks.  EFGI tracks the movement of large capitalization Egyptian companies(18) that are most 
actively traded on the ESE.   
 
The sample consists of 2237 daily observations on stock returns of the HFI and the EFGI indices. It covers a 

nine-year period beginning on January 3, 1993 and ending on December 31, 2001. For illustrative purposes, Figure 1 
(Appendix) compares the two indices’ daily closing values taken across the sample period. Figure 2 (Appendix) looks at 
the behavior of the EFGI and HFI returns, respectively, over the sample period.    
  

The effect of policy change has been explored by dividing the sample into two parts: pre-and post-imposing the 
circuit breaker(19). Moreover, a restricted F-Chow test (20) was formulated to test for the significance of the structural 
change. The result rejects the null hypothesis of no structural change in daily returns, and consequently the sample was 
partitioned into two sub-samples. The descriptive statistics of both indices (found in Appendix Tables 1, 2 and 3) over 
the two sub-sample periods highlighting the following: 
 

• Mean returns for the EFG Index are slightly larger than the HFI(21), whereas the Median returns for HFI are 
larger than EFGI’s for the first sub-sample.  As for the second sub-sample, the exact opposite occurs. 

 
• Non-conditional variances for both indices increased in the second sub-sample over the first one. Furthermore, 

there is evidence of volatility clustering (see Figure 2 and that large or small asset price changes tend to be 
followed by other large or small price changes of either sign (positive or negative).  This implies that stock 
return volatility changes over time.  Furthermore, the figures indicate a sharp increase in volatility starting from 
the year 1997. 

 
• The returns for both indices are positively skewed.  The null hypothesis for skewness coefficients that conform 

with a normal distribution’s value of zero has been rejected at the 5% significance level.(
 22)   

 
• The returns for both indices also display excess kurtosis.  The null hypothesis for kurtosis coefficients that 

conform to the normal value of three is rejected for both indices.(23) 
 
• The high values of Jarque-Bera test for normality decisively rejects the hypothesis of a normal distribution. 

                                                 
(16) The two indices (EFGI) and (HFI) have been chosen because they represent the largest and most actively traded stocks.  They also entail the 

largest sample information.  Other indices cited by Mecagni and Sourial (1999) were not used for reasons as follows: (a) The Capital Market 
Authority  index (CMAI), was not used due to the dominance of infrequently traded stocks which results in a downward bias of index momentum; 
(b) The Prime Index for Initial Public Offerings (PIPO) was not used because it represents the partially and wholly privatized companies only; and 
(c) the MSCI and IFC (Global and Investable) indices were not used in this paper since they would entail a sizable loss in sample information.  
The two indices were started in 1996 and 1997, respectively.   

(17) No Over the Counter (OTC) traded stocks. 
(18) Companies with a market capitalization that exceeds L.E.500 million. 
(19) The sample is divided into two sub-samples: (a) Sub-sample 1 starting from 1/3/93 and ending 1/31/97 just before imposing the price limit 

regulation in February 1997; and (b) Sub-sample 2 starting after the regulation and ending on December 31 2001. 
(20) To carry out the test, the data were partitioned into two sub-samples.  Each sub-sample contained more observations than the number of 

coefficients in the equation so that the equation can be estimated. The Chow breakpoint test compares the sum of squared residuals obtained by 
fitting a single equation to the entire sample with the sum of squared residuals obtained when separate equations are fit to each sub-sample of the 
data.  E-Views, reports the F-statistic for the Chow breakpoint test. The F-statistic is based on the comparison of the restricted and unrestricted 
sum of squared residuals and in the simplest case involving a single breakpoint. 

(21) A Z-test was conducted to test for significant differences in the means. 
(22) The t-stat was calculated in the following matter: (S-0)/se(S), where (S) stands for skewness coefficient and (se(S)) stands for the standard error.  

Standard error =( 6/number of observations)1/2. 
(23) The t-stat was calculated in the following matter: (K-3)/se(K), where (K) stands for kurtosis coefficient and (se(K)) stands for the standard error.  

Standard error  =( 24/number of observations) 1/2. 
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• Although the Augmented Dicky-Fuller (ADF) unit root tests strongly reject the hypothesis of non-

stationarity,(24) both returns display a degree of time dependence. This can be seen through the Autocorrelation 
Function (ACF) for both indices. Correlograms (taken over 36 lags) were estimated for the returns on both 
indices. For the first sub-sample, the correlograms show a pattern of smooth decay typical of stationarity, and a 
second-order autoregressive process AR(2).(25)  The second sub-sample has a sharper decay after the first lag 
indicating the presence of an AR(1). This has been confirmed using the Richardson and Smith test (1994) 
calculated on ten autocorrelations. (see Appendix Table 2) 

• Engle’s (1982) test of no ARCH is calculated for distinct orders (q= 2,5 and 10) (see Appendix Table 3).  Both 
indices show signs of heteroskedasticity in both sub-samples, indicating the legitimacy of using 
ARCH/GARCH type models. 
 
The statistical results for both indices appear to have very similar characteristics.  They both display positive 

skewness, were found to be deviating from normality, and display a degree of serial correlation.  These stylized results 
of non-conformity to normality are consistent with previous empirical work on the ESE(26) and similar to a number of 
previous empirical works on mature markets(27). 

 
Finally, Engle and Ng’s (1993) sign bias test on the raw data was conducted. The test was performed by 

estimating Equation 13 using Equations 14a and 14b as proxies for tε  and tν .  For the first sub-sample, the results 
show no signs of asymmetry in the data because of the insignificance of b in the two regressions for the two indices. On 
the other hand, for the second sub-sample, b is significant for both indices at the 5% level, which in turn, justifies 
estimating asymmetric GARCH type models.  

 
In sum, looking at the first sub-sample, it may be hypothesized from the specification tests that the simple 

symmetric GARCH should outperform all other asymmetric GARCH models. Furthermore, given the fact that the 
residual series exhibited some excess kurtosis, it can also be predicted that a fatter-tailed distribution such as the 
student-t, or maybe a GED, should generate better results than just simply a normal distribution or a more complex 
asymmetric student-t. As for the second sub-sample, the sign bias test on the raw series predicts that asymmetric 
GARCH models should do a better job in explaining the ESE’s dynamics.  In addition, both the presence of excess 
kurtosis and asymmetry tell us that a skewed student-t distribution should excel.   

 
Estimation Results 

 
To estimate the parameters of the earlier mentioned models, we use the GARCH ToolBox in MATLAB, as 

well as, the G@RCH 2.3 Ox programmed package of Laurent and Peters (2001).(28)  Models (29) 3, 4,and 5 will only be 
studied in their most simple structure, when both of the lags, p and q, are equal to one.  Low-order lag lengths were 
found to be sufficient to model the variance dynamics over very long sample periods.(30)   
  

As already previously mentioned, a maximum likelihood approach is used to estimate the three models with 
the four underlying error distributions.  For the first sub-sample, convergence was not reached for any of the models 
using the GED distribution.  Furthermore, convergence was not reached either for the APARCH model under any of the 
four distributions.  Failures often occur because the series of the conditional variance is given a negative value, or 
because stationarity conditions on the estimated parameters could not be met31. Appendix Tables 4 and 5 present the 

                                                 
(24) While it may appear that the test can be carried out by performing a t-test, the t-statistic under the null hypothesis of a unit root does not have the 

conventional t-distribution. Dickey and Fuller (1979) showed that the distribution under the null hypothesis is nonstandard, and simulated the 
critical values for selected sample sizes. More recently, MacKinnon (1991) has implemented a much larger set of simulations than those tabulated 
by Dickey and Fuller. In addition, MacKinnon estimates the response surface using the simulation results, permitting the calculation of Dickey-
Fuller critical values for any sample size and for any number of right-hand variables.  These MacKinnon critical values for unit root tests were the 
ones used in this paper. 

(25)  See Enders (1994).  
(26)   See, Mecagni and Sourial (1999). 
(27)  Fama (1965) showed that the distribution of both daily and monthly returns for the Dow Jones depart from normality, and are negatively, 

leptokurtic, and volatility clustered.  Furthermore, Kim and Kon (1994) found the same for the S&P 500. Finally, Peters (2001) showed similar 
results for two major European stock indices (FTSE 100 and DAX 30).  In general, most mature markets were found to have negatively skewed 
return series. For a more detailed discussion see Harvey and Siddique (1999) or Harvey and Siddique (2000). 

(28)  The authors would like to thank Prof. Blake LeBaron and Math Works for their support in sharing the  upgrades of the MATLAB GARCH 
ToolBox;  Prof. Sebastian Laurent for his immense help and valuable comments with operating the G@RCH 2.3 package.  Finally, the authors 
are thankful to  Dean Peter Petri and GSIEF for their financial support.  

(29)  The EGARCH model of Nelson (1991) was also tried but did not converge in any of the attempts. 
(30)  French, Schwert, and Stambaugh (1987) analyzed daily S&P stock index data for 1928-1984 for a total of 15,369 observations and required only 

four parameters in the conditional variance equation (including the constant). 
(31) See Hagerud (1997). 
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estimation results for the first sub-sample’s parameters of the GARCH and GJR models, respectively.  GJR’s use 
appears to be unjustified for sub-sample 1, since the symmetric coefficients were not significant for both indices. 
  

Since one of the objectives of this study is to jointly investigate which of the GARCH type models and 
underlying distributions “best” models the conditional variance for the ESE. Three selection criteria for finding the best 
model and distribution are used:   (a) the value of the likelihood function, which is maximized; (b) the BIC (32) 
information criteria of Schwartz; and the AIC(33) information criteria of Akaiki, which are both minimized.(34)   
  

Appendix Tables 6 to 8 report the log likelihood value, the information criteria, and other useful in-sample 
statistics.(35)  Not surprisingly, the models with the most parameters always maximize the likelihood function, in this 
case, GJR.  However, when the number of parameters is given consideration, as in the AIC and BIC, the simple 
traditional GARCH always outperforms the more parameterized GJR across both indices.  This result strengthens the 
hypothesis drawn earlier from the specification tests that the use of asymmetric models is, for the first sub-sample, 
unnecessary.   
  

Regarding the densities, the two student-t distributions clearly outperform the Gaussian.  Again, it is not 
surprising to see the log-likelihood function increase strongly when using the skewed student-t density against the two 
other symmetric densities.  The presence of asymmetry in the density is not needed because in all cases for sub-sample 
1 (when using GARCH and GJR), the student-t outperforms the skewed-t for both indices (see Appendix Tables 9 and 
10).  
  

Both models that converge for the first sub-sample seem to do an adequate job of describing the dynamics of 
the first and second moments.  The Box-Pierce statistics under the null of no autocorrelation, for the residuals and the 
squared residuals, are, for the most part, non-significant at the ten percent level. 
  

Appendix Tables 11 to 13 present the estimation results for the second sub-sample’s parameters of the 
GARCH, GJR and APARCH models respectively.  Both uses of GJR and APARCH appear to be justified for sub-
sample 2, since the symmetric coefficients are all significant at the 5% level for both indices. 
  

Looking at the log likelihood values AIC and BIC in Appendix Tables 14-17, the fact that GJR or APARCH 
models better estimate the series for both indices than the traditional GARCH, may almost be highlighted.  However, 
this conclusion should be cautiously drawn because of the very small differences in values for these tests.   
  

In looking at densities for the second sub-sample, no single distribution stands as being the best.(See Appendix 
Tables 18 to 20). Yet again, the two Student-t distributions clearly outperform the Guassian and the GED distributions 
for both indices. Unlike the first sub-sample, where the use of asymmetric densities was not needed, in the second sub-
sample the usefulness of asymmetry is not clear-cut. If the Skewed Student-t density gives better results than the 
symmetric Student-t when modeling the EFGI, the opposite is observed for the HFI. A possible explanation for this 
deviation is that if skewness is significant in both series, its magnitude might be lower for the HFI.   
  

GARCH, GJR and APARCH for the second sub-sample also do a decent job in describing the dynamics of the 
first and second moments.  The Box-Pierce statistics, under the null of no autocorrelation, for the residuals and the 
squared residuals are non-significant at the ten percent level. 

 
Conclusion 

 
  This paper examines whether the imposition of daily price limits changes the return volatility dynamics.  As 
laboratory, the Egyptian Stock Exchange was used where 5% daily limits were imposed in early 1997. 

 

                                                 

(32) 
n

k

n

LogL
Schwartz

)log(22 +−=  

(33) 
n

k

n

LogL
Akaiki +−= 2  

where, LogL = log likelihood value, n = number of observations and k is the number of estimated parameters. 
(34) For a more detailed discussion of AIC and BIC see Green, (2000). 
(35) Reported are: the Box-Pierce statistics at lag (l) for both the standardized and squared standardized residuals and the adjusted Pearson goodness-of-

fit test that compares the empirical distribution of innovations with the theoretical one. 
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The study compares different GARCH-type models with different underlying distributional assumptions for 
the innovations in an effort to understand the data generation process of the series.  The comparison focuses on two 
different aspects, specification tests and in-sample estimates, in order to determine the “best” fitted model.  Moreover, 
the time series is divided into two sub-samples to examine changes in performance of the models as a result of the 
circuit breaker regulation that affected the trading environment.   
  

The estimation results conform to a series of ex-ante specification tests.  For the first sub-sample, the 
evaluation criteria for the in-sample estimates show that a simple GARCH model with student-t innovations 
outperforms any of the more sophisticated asymmetric models. Regarding the second sub-sample, it was clear that 
APARCH and GJR gave better estimates over the traditional GARCH.  The favorite density was yet again the fat-tailed 
student-t distribution.   
  

The empirical evidence provided in this article confirms Mecagni and Sourial (1999) findings that the 
symmetric price limits on individual shares failed to dampen volatility in the market.  However, this paper adds two 
more important findings.   

 
• Firstly, regulatory and/or structural shifts in the market results in a different conditional volatility model 

structure. In other words, the appropriateness of assuming the same underlying volatility model for both pre 
and post samples is questioned. 

 
• Secondly, the leverage effect, captured in the post-limit sub-sample, shows Egyptian investors to be very risk-

averse (negative shocks tend to have a deeper impact on conditional volatility than positive shocks). With price 
limits in place, investors find it hard to exit the market, which forces them to advance their trades.  This 
advancement of trades creates a volatility spillover effect on subsequent trading days. 
 
To conclude, in many emerging markets, circuit breakers are implemented with a belief that they will protect 

the market from harmful volatility and speculation. However, in many cases, circuit breakers end up paving the way for 
speculative attacks. Thus, to fully evaluate the consequences of circuit breakers such as price limits, it would be 
important to examine their effects on the overall market efficiency. 
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Figure 1.   EFGI and HFI daily closing prices  
January 3, 1993 to December 31, 2001. 

 

 
 

Figure 2.   EFGI and HFI daily returns. 
        January 3, 1993 to December 31, 2001. 

 
 

 
 

Table 1.  Descriptive Statistics for Sub-samples 1 and 2 
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Table 2.  Results 

from Tests of 

Autocorrelation for Sub-samples 1 and 2 
 

Index RS(10) on rt 
(p-value) 

RS(10) on εεεεt from 
AR(1) (p-value) 

RS(10) on εεεεt from 
AR(2) (p-value) 

 Sub-sample (1) Jan 3, 1993 –  Jan 31, 1997 
HFI 0.005 0.039 0.172 

EFGI 0.003 0.018 0.092 
 Sub-sample (2) Feb 2, 1997 – Dec 31, 2001 

HFI 0.041 0.365 ----- 
EFGI 0.033 0.296 ----- 

 
N.B. Column two gives p-values for the Richardson and Smith’s (1994) test for autocorrelation calculated on the demeaned returns. 

 Sub-sample (1) 
Jan 3, 1993 – Jan 

31, 1997 

Sub-sample (2) 
Feb. 2, 1997 – Dec. 

31, 2001 
Descriptive Statistics HFI EFGI HFI EFGI 

Mean (%) 0.1717 0.1760 -0.0701 -0.0735 
Standard Error 0.0292 0.0254 0.0421 0.0442 
Median (%) 0.0527 0.0707 -0.0937 -0.0960 
Standard Deviation (%) 0.9321 0.8107 1.3807 1.4493 
Variance 0.0087 0.0066 0.0191 0.0210 
Kurtosis 9.2774 9.2799 3.9512 3.9083 
Skewness 0.4690 0.7587 0.2019 0.1442 
Jarque-Berra Normality Test 1706.634 1768.753 422.352 401.385 
Augmented Dickey-Fuller Unit Root Test -10.6552 -10.368 -12.6053 -12.8503 
Range  0.1021 0.0941 0.0902 0.0918 
Minimum -5.1527 -4.9213 -4.6796 -4.6910 
Maximum 5.0565 4.4893 4.3417 4.4971 
Sample Size 1017 1017 1219 1219 
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Table 3.  Results from Tests of No ARCH for Sub-samples 1 and 2 
 

Index No ARCH (2) No ARCH (5) No ARCH 
(10) κκκκ(εεεε) s(εεεε) 

 Sub-sample (1) Jan 3, 1993 –  Jan 31, 1997 

HFI 46.866 
(0.000) 

23.634 
(0.000) 

12.890 
(0.000) 

10.009 0.187 

EFGI 59.026 
(0.000) 

27.540 
(0.000) 

14.546 
(0.000) 

9.3512 0.171 

 Sub-sample (2) Feb 2, 1997 – Dec 31, 2001 

HFI 135.770 
(0.000) 

70.150 
(0.000) 

37.609 
(0.000) 

4.919 0.253 

EFGI 158.290 
(0.000) 

75.545 
(0.000) 

40.125 
(0.000) 

4.008 0.203 

 
Table 4.  AR(2)-GARCH (1,1) Estimation Results for Sub-sample 1 

from January 3, 1993 to December 31, 1997   
 

HFI EFGI 
 Normal Student-t GED Skewed-t Normal Student-t GED Skewed-t 

0ϕ
 

0.0281 
(0.0376) 

0.0248 
(0.0267) Fail 0.0450 

(0.0358) 
0.0173 

(0.0269) 
0.0160 

(0.0203) Fail 0.0137 
(0.0266) 

1ϕ
 

0.2819 
(0.0373) 

0.2834 
(0.0359) Fail 0.2811 

(0.0361) 
0.2296 

(0.0406) 
0.2837 

(0.0358) Fail 0.2786 
(0.0358) 

2ϕ
 

0.1270 
(0.0376) 

0.0869 
(0.0338) Fail 0.0844 

(0.0339) 
0.0906 

(0.0409) 
0.0527 

(0.0330) Fail 0.0508 
(0.0331) 

1γ
 

0.0079 
(0.00821) 

0.0584 
(0.0513) Fail 0.0609 

(0.0523) 
0.0046 

(0.0019) 
0.0116 

(0.0070) Fail 0.0124 
(0.0083) 

1α
 

0.3431 
(0.3250) 

0.2527 
(0.2262) Fail 0.2539 

(0.2497) 
0.2231 

(0.2116) 
0.1567 

(0.1075) Fail 0.1456 
(0.1642) 

1β
 

0.6480 
(0.0641) 

0.7418 
(0.1228) Fail 0.7422 

(0.1194) 
0.7679 

(0.0119) 
0.8258 

(0.0347) Fail 0.8354 
(0.0373) 

υ
 
 

 2.6442 
(0.3059) Fail 2.6113 

(0.3068)  2.7294 
(0.3478) Fail 2.6155 

(0.3448) 

ξ
 
 

  Fail -0.0388 
(0.0463)   Fail -0.0734 

(0.0441) 

Table 5.  AR(2)-GJR (1,1) Estimation Results for Sub-sample 1 
from January 3, 1993 to December 31, 1997  

 
HFI EFGI 

 Normal Student-t GED Skewed-t Normal Student-t GED Skewed-t 

0ϕ
 

0.0242 
(0.0359) 

0.0348 
(0.0246) Fail 0.0258 

(0.0327) 
0.0038 

(0.0267) 
0.0256 

(0.0198) Fail 0.0069 
(0.0257) 

1ϕ
 

0.2802 
(0.0357) 

0.2759 
(0.0343) Fail 0.2742 

(0.0347) 
0.2344 

(0.0384) 
0.2723 

(0.0342) Fail 0.2679 
(0.0346) 

2ϕ
 

0.1404 
(0.0359) 

0.0887 
(0.0322) Fail 0.0876 

(0.0324) 
0.0945 

(0.0389) 
0.0597 

(0.0312) Fail 0.0577 
(0.0313) 
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1γ
 

0.0016 
(0.0009) 

0.0595 
(0.0365) Fail 0.0592 

(0.0364) 
0.0056 

(0.0021) 
0.0153 

(0.0082) Fail 0.0149 
(0.0082) 

1α
 

0.0485 
(0.0938) 

0.4618 
(0.2217) Fail 0.4726 

(0.2290) 
0.1145 

(0.0197) 
0.3132 

(0.1162) Fail 0.3432 
(0.1363) 

1β
 

0.9577 
(0.0063) 

0.7098 
(0.0982) Fail 0.7091 

(0.0975) 
0.08936 
(0.1234) 

0.8099 
(0.0378) Fail 0.8067 

(0.0373) 

1ω
 

-0.0140 
(0.0104) 

-0.1879 
(0.1459) Fail -0.1905 

(0.1485) 
-0.0128 
(0.0287) 

-0.0914 
(0.0940) Fail -0.0938 

(0.1016) 
υ
 
 

 2.7377 
(0.2958) Fail 2.7248 

(0.2971)  2.8401 
(0.3409) Fail 2.7675 

(0.3414) 

ξ
 
 

  Fail -0.0184 
(0.0444)   Fail -0.0475 

(0.0431) 

 
Table 6.  Post-estimation Statistics for Sub-sample 1 Using  

a Normal Distribution 
 

HFI EFGI  
GARCH GJR GARCH GJR 

AIC 2.2919 2.2931 1.9779 1.9798 
BIC 2.3234 2.3289 2.0094 2.0167 
LL -1044.840 -1043.931 -900.872 -900.773 

Q(20) 27.0796 28.3415 27.1476 26.9028 
Q2(20) 27.7842 29.9136 6.8547 6.8535 
P(50) 165.4973 156.2279 145.1047 142.2694 

P-Val (lag-1) (0.0000) (0.0000) (0.0000) (0.0000) 
P-Val(lag-k-1) [0.0000] [0.0000] [0.0000] [0.0000] 

 
Table 7.  Post-estimation Statistics for Sub-sample 1 Using  

a Student-t Distribution 
 

HFI EFGI  
GARCH GJR GARCH GJR 

AIC 1.9999 2.0016 1.7329 1.7339 
BIC 2.0367 2.0417 1.7697 1.7760 
LL -909.983 -908.839 -787.570 -787.027 

Q(20) 22.6572 22.4837 22.1934 21.0600 
Q2(20) 51.5792 52.7243 8.0535 7.7841 
P(50) 62.4438 59.8266 45.7590 63.7525 

P-Val (lag-1) (0.0939) (0.1382) (0.0605) (0.0766) 
P-Val(lag-k-1) [0.0218] [0.02891] [0.0318] [0.0129] 

 
 

Table 8.  Post-estimation Statistics for Sub-sample 1 Using 
a Skewed-t Distribution 

 
HFI EFGI  

GARCH GJR GARCH GJR 
AIC 2.0019 2.0018 1.7337 1.7348 
BIC 2.0439 2.0489 1.7757 1.7821 
LL -909.889 -908.754 -786.903 -786.419 

Q(20) 22.5149 22.3562 20.5837 19.6528 
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Q2(20) 52.3955 53.5165 7.8765 7.6543 
P(50) 57.4275 54.4831 51.8659 58.4089 

P-Val (lag-1) (0.1912) 0.2738 (0.2678) (0.1680) 
P-Val(lag-k-1) [0.0457] [0.0531] (0.0989) [0.0301] 

 
 

Tables 6-8 compare post estimation statistics across models for the specifications that converged with the first 
sub-sample series. AIC, BIC are the Akaike and Schwartz information criteria. LL, is the log likelihood value.  Q(20) 
and Q2(20) are respectively the Box-Pierce statistic at lag 20 of the standardized and squared standardized residuals.  
P(50) is the Pearson Goodness-of-fit with 50 cells.  P-values of the non-adjusted and adjusted test are given respectively 
in parentheses and brackets. The period investigated is from Jan 3, 1993 to Dec 31, 1997.   

 
Table 9.  Post-estimation Statistics for Sub-sample 1 Using GARCH 

   
HFI EFGI  

Normal Student-t Skewed-t Normal Student-t Skewed-t 
AIC 2.2919 1.9999 2.0019 1.9779 1.7329 1.7337 
BIC 2.3234 2.0367 2.0439 2.0094 1.7697 1.7757 
LL -1044.84 -909.98 -909.88 -900.87 -787.57 -786.90 

Q(20) 27.0796 22.6572 22.5149 27.1476 22.1934 20.5837 
Q2(20) 27.7842 51.5792 52.3955 6.8547 8.0535 7.8765 
P(50) 165.497 62.4438 57.4275 145.1047 45.7590 51.8659 

P-Val (lag-1) (0.0000) (0.0939) (0.1912) (0.0000) (0.0605) (0.2627) 
P-Val(lag-k-1) [0.0000] [0.0218] [0.0457] [0.0000] [0.0318] [0.0989] 

 
Table 10.  Post-estimation Statistics for Sub-sample 1 Using GJR 

 
HFI EFGI  

Normal Student-t Skewed-t Normal Student-t Skewed-t 
AIC 2.2931 2.0016 2.0018 1.9798 1.7339 1.7348 
BIC 2.3289 2.0417 2.0489 2.0167 1.7760 1.7821 
LL -1043.93 -908.83 -908.75 -900.77 -787.02 -786.42 
Q(20) 28.3415 22.4937 22.3562 26.9028 21.0612 19.6528 
Q2(20) 29.9136 52.7243 53.5165 6.8535 7.7841 7.6543 
P(50) 156.2279 59.8266 54.4831 142.269 63.7525 58.4089 
P-Val (lag-1) (0.0000) (0.1382) (0.2738) (0.0000) (0.0766) (0.0168) 
P-Val(lag-k-1) [0.0000] [0.0289] [0.0530] [0.0000] [0.0129] [0.0301] 

 
Tables 9 and 10 compare post estimation statistics across distributions for the specifications that converged 

with the first sub-sample series. AIC, BIC are the Akaike and Schwartz information criteria. LL, is the log likelihood 
value.  Q(20) and Q2(20) are respectively the Box-Pierce statistic at lag 20 of the standardized and squared standardized 
residuals.  P(50) is the Pearson Goodness-of-fit with 50 cells.  P-values of the non-adjusted and adjusted test are given 
respectively in parentheses and brackets. The period investigated is from Jan 3, 1993 to Dec 31, 1997 



Journal of Development and Economic Policies  Volume 7 -No. 1 - December 2004 

Eskandar A. Tooma & Maged S. Sourial   

 

 

22

 
Table 11.  AR(1)-GARCH (1,1) Estimation Results for Sub-sample 2 

 
HFI EFGI 

 Normal Student-t GED Skewed-t Normal Student-t GED Skewed-t 

0ϕ
 

-0.0436 
(0.0343) 

-0.0784 
(0.0314) 

-0.0712 
(0.0325) 

-0.0495 
(0.0344) 

-0.0505 
(0.0339) 

-0.0720 
(0.0317) 

-0.0671 
(0.0328) 

-0.0529 
(0.0342) 

1ϕ
 

0.2974 
(0.0315) 

0.3037 
(0.0312) 

0.02965 
(0.0307) 

0.3120 
(0.0313) 

0.2736 
(0.0310) 

0.2767 
(0.0311) 

0.2754 
(0.0318) 

0.2812 
(0.0311) 

1γ
 

0.0585 
(0.0129) 

0.0332 
(0.1060) 

0.0442 
(0.0125) 

0.0337 
(0.1067) 

0.0532 
(0.0122) 

0.0351 
(0.0109) 

0.0435 
(0.0122) 

0.0353 
(0.0110) 

1α
 

0.3543 
(0.0497) 

0.3810 
(0.0583) 

0.3700 
(0.0577) 

0.3687 
(0.0577) 

0.3409 
(0.0479) 

0.3564 
(0.0544) 

0.3488 
(0.0539) 

0.3467 
(0.0542) 

1β
 

0.6575 
(0.0368) 

0.6725 
(0.0384) 

0.6646 
(0.0403) 

0.6812 
(0.0387) 

0.6715 
(0.0366) 

0.6827 
(0.0386) 

0.6773 
(0.0398) 

0.6895 
(0.0393) 

υ  
  7.7052 

(1.6180) 
1.4717 

(0.0846) 
7.8586 

(1.7111)  9.8063 
(2.5201) 

1.5809 
(0.0919) 

9.9566 
(2.6137) 

ξ  
 

   0.1050 
(0.0448)    0.0744 

(0.0449) 

 
This table reports results from AR(1)-GARCH (1,1) estimation using different densities.  The number of 

observations was reduced by one hundred for forecast evaluation purposes.  Columns 2, 3, 4, 5 are the different model 
estimations using normal, student, GED and skewed student-t respectively.  Asymptotic heteroskedasticity-consistent 
standard errors are given in parentheses, (bold) denoting significance at the 5% level.  The period investigated is from 
February 2, 1997 to Dec 31, 2001.   
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Table 12.  AR(1)-GJR (1,1) Estimation Results for Sub-sample 2 

 
HFI EFGI 

 Normal Student-t GED Skewed-t Normal Student-t GED Skewed-t 

0ϕ
 

-0.0730 
(0.0360) 

-0.1066 
(0.0325) 

-0.0974 
(0.0328) 

-0.0783 
(0.0351) 

-0.0754 
(0.0357) 

-0.0965 
(0.0332) 

-0.0899 
(0.0343) 

-0.0776 
(0.0353) 

1ϕ
 

0.2931 
(0.0314) 

0.2981 
(0.0311) 

0.2911 
(0.0289) 

0.3013 
(0.0311) 

0.2702 
(0.0310) 

0.2739 
(0.0310) 

0.2727 
(0.0320) 

0.2750 
(0.0310) 

1γ
 

0.0559 
(0.0126) 

0.0315 
(0.0102) 

0.0418 
(0.0121) 

0.0311 
(0.0101) 

0.0512 
(0.0120) 

0.0336 
(0.0106) 

0.0416 
(0.0119) 

0.0335 
(0.0106) 

1α
 

0.2921 
(0.0476) 

0.2902 
(0.0538) 

0.2900 
(0.0535) 

0.2804 
(0.0527) 

0.2863 
(0.0476) 

0.2871 
(0.0527) 

0.2847 
(0.0525) 

0.2790 
(0.0519) 

1β
 

0.6580 
(0.0363) 

0.6761 
(0.0378) 

0.6664 
(0.0396) 

0.6838 
(0.0378) 

0.6751 
(0.0360) 

0.6868 
(0.0379) 

0.6816 
(0.0391) 

0.6923 
(0.0384) 

1ω
 

0.1348 
(0.0587) 

0.1876 
(0.0711) 

0.1708 
(0.0697) 

0.1798 
(0.0685) 

0.1074 
(0.0540) 

0.1374 
(0.0629) 

0.1267 
(0.0614) 

0.1349 
(0.0614) 

υ  
 

 7.6317 
(1.5682) 

1.4712 
(0.0835) 

7.8635 
(1.6844) 

 9.6895 
(2.4451) 

1.5795 
(0.0911) 

9.9519 
(2.5851) 

ξ  
 

   0.1032 
(0.0448) 

   0.0747 
(0.0447) 

 
This table reports results from AR(1)-GJR (1,1) estimation using different densities.  The number of 

observations was reduced by one hundred for forecast evaluation purposes.  Columns 2, 3, 4, 5 are the different model 
estimations using normal, student, GED and skewed student-t respectively.  Asymptotic heteroskedasticity-consistent 
standard errors are given in parentheses, (bold) denoting significance at the 5% level.  The period investigated is from 
February 2, 1997 to Dec 31, 2001.   
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Table 13.  AR(1)-APARCH (1,1) Estimation Results for Sub-sample 2 

 
HFI EFGI 

 Normal Student-t GED Skewed-t Normal Student-t GED Skewed-t 

0ϕ
 

-0.0682 
(0.0378) 

-0.1057 
(0.0326) 

-0.0955 
(0.0345) 

-0.0752 
(0.0366) 

-0.0734 
(0.0360) 

-0.0965 
(0.0331) 

-0.0893 
(0.0345) 

-0.0772 
(0.0354) 

1ϕ
 

0.3007 
(0.0321) 

0.3005 
(0.0313) 

0.2960 
(0.0317) 

0.3042 
(0.0315) 

0.2706 
(0.0312) 

0.2739 
(0.0310) 

0.2731 
(0.0321) 

0.2751 
(0.0310) 

1γ
 

0.0654 
(0.0142) 

0.0356 
(0.0124) 

0.0491 
(0.0144) 

0.0361 
(0.0122) 

0.0554 
(0.0136) 

0.0333 
(0.0122) 

0.0440 
(0.0137) 

0.0342 
(0.0122) 

1α
 

0.3328 
(0.0443) 

0.3620 
(0.0572) 

0.3493 
(0.0535) 

0.3446 
(0.0551) 

0.3275 
(0.0461) 

0.3536 
(0.0573) 

0.3385 
(0.0537) 

0.3408 
(0.0560) 

1β
 

0.6870 
(0.0359) 

0.6939 
(0.0433) 

0.6908 
(0.0417) 

0.7062 
(0.0427) 

0.6915 
(0.0403) 

0.6852 
(0.0487) 

0.6918 
(0.0460) 

0.6959 
(0.0485) 

1τ
 

0.0978 
(0.0441) 

0.1267 
(0.0466) 

0.1188 
(0.0482) 

0.1256 
(0.0477) 

0.0804 
(0.0411) 

0.0973 
(0.0428) 

0.0926 
(0.0444) 

0.0985 
(0.0434) 

δ
 
 

1.4600 
(0.2856) 

1.7215 
(0.3706) 

1.5785 
(0.3430) 

1.6533 
(0.3629) 

1.7186 
(0.3670) 

2.0253 
(0.4770) 

1.8313 
(0.4299) 

1.9451 
(0.4635) 

υ
 
 

 7.7057 
(1.6078) 

1.4782 
(0.0845) 

7.9737 
(1.7466) 

 9.6814 
(2.4453) 

1.5815 
(0.0916) 

9.9763 
(2.6088) 

ξ
 
 

   0.1063 
(0.0450) 

   0.0752 
(0.0449) 

 
This table reports results from AR(1)-APARCH (1,1) estimation using different densities.  The number of 

observations was reduced by one hundred for forecast evaluation purposes.  Columns 2, 3, 4, 5 are the different model 
estimations using normal, student, GED and skewed student-t respectively.  Asymptotic heteroskedasticity-consistent 
standard errors are given in parentheses, (bold) denoting significance at the 5% level.  The period investigated is from 
February 2, 1997 to Dec 31, 2001.   
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Table 14.  Post-estimation Statistics for Sub-sample 2 Using a Normal Distribution 
 

HFI EFGI  
GARCH GJR APARCH GARCH GJR APARCH 

AIC 3.0126 3.0093 3.0087 3.0881 3.0862 3.0876 
BIC 3.0368 3.0362 3.3017 3.1195 3.1101 3.1190 
LL -1680.570 -1677.726 -1676.408 -1722.82 -1720.768 -1720.516 
Q(20) 38.7892 40.9358 39.7497 35.6250 38.9075 38.8009 
Q2(20) 17.7525 18.5805 18.0303 21.6192 22.3666 22.1063 
P(50) 66.6850 49.4093 60.9374 51.1072 56.0223 54.3244 
P-Val (lag-1) (0.0471) (0.0456) (0.1178) (0.0390) (0.0228) (0.0278) 
P-Val(lag-k-1) [0.0152] [0.0232] [0.0294] [0.0214] [0.0087] [0.0096] 

 
Table 15.  Post-estimation Statistics for Sub-sample 2 Using 

a Student-t Distribution 
 

HFI EFGI  
GARCH GJR APARCH GARCH GJR APARCH 

AIC 2.9806 2.9754 2.9767 3.0688 3.0660 3.0678 
BIC 3.0075 3.0068 3.0126 3.0967 3.0964 3.1037 
LL -1661.667 -1657.744 -1657.503 -1711.00 -1708.451 -1708.451 
Q(20) 38.0908 43.9911 43.7125 37.3773 41.8335 41.8408 
Q2(20) 20.1930 20.9786 20.6143 23.8263 24.0072 24.0410 
P(50) 39.4004 27.5147 37.0769 64.0652 48.1582 46.1921 
P-Val (lag-1) (0.0834) (0.0994) (0.0894) (0.0728) (0.0507) (0.0587) 
P-Val(lag-k-1) [0.0628] [0.0958] (0.0645) (0.0202) [0.0237] [0.0266] 

 
Table 16.  Post-estimation Statistics for Sub-sample 2 Using 

a GED Distribution 
 

HFI EFGI  
GARCH GJR APARCH GARCH GJR APARCH 

AIC 2.9888 2.9846 2.9854 3.0752 3.0730 3.0746 
BIC 3.0157 3.0160 3.0212 3.1021 3.1044 3.1105 
LL -1666.27 -1662.93 -1662.34 -1714.61 -1712.36 -1712.28 
Q(20) 38.2406 43.6063 42.8182 36.384 40.3427 40.2542 
Q2(20) 19.1555 19.9843 19.4103 22.8130 23.3187 23.1316 
P(50) 39.5791 34.2172 43.0643 50.6604 48.4263 45.5666 
P-Val (lag-1) (0.0829) (0.0946) (0.0711) (0.0407) (0.0496) (0.0613) 
P-Val(lag-k-1) [0.0620] [0.0797] [0.0382] [0.0196] [00229] [0.0287] 
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Table 17.  Post-estimation Statistics for Sub-sample 2 Using 
a Skewed-t Distribution 

 
HFI EFGI  

GARCH GJR APARCH GARCH GJR APARCH 
AIC 2.9774 2.9724 2.9735 3.0682 3.0653 3.0671 
BIC 3.0088 3.0083 3.0139 3.0996 3.0912 3.1005 
LL -1658.89 -1655.08 -1654.70 -1709.66 -1707.09 -1707.08 
Q(20) 37.0505 43.3402 42.9835 36.5826 41.5144 41.5002 
Q2(20) 20.5418 21.5452 21.4203 23.886 24.2280 24.1888 
P(50) 40.5621 41.7239 48.9625 44.0474 40.2046 43.4218 
P-Val (lag-1) (0.0799) (0.0760) (0.0476) (0.0673) (0.0810) (0.0697) 
P-Val(lag-k-1) [0.0534] [0.0439] [0.0156] [0.0384] [0.0505] [0.0327] 

 
Tables 14-17 compare post estimation statistics across models for the specifications that converged with the 

first sub-sample series. AIC, BIC are the Akaike and Schwartz information criteria. LL, is the log likelihood value.  
Q(20) and Q2(20) are respectively the Box-Pierce statistic at lag 20 of the standardized and squared standardized 
residuals.  P(50) is the Pearson Goodness-of-fit with 50 cells.  P-values of the non-adjusted and adjusted test are given 
respectively in parentheses and brackets. The period investigated is from February 2, 1997 to Dec 31, 2001. 

 
Table 18.  Post-estimation Statistics for Sub-sample 2 Using GARCH 

 
HFI EFGI  

Normal Stud-t GED Skew-t Normal Stud-t GED Skewed-t 
AIC 3.0126 2.9806 2.9888 2.9774 3.0881 3.0688 3.0752 3.0682 
BIC 3.0360 3.0075 3.0157 3.0088 3.1195 3.0967 3.1021 3.0996 
LL -1680.57 -1661.67 -1666.27 -1658.89 -1722.82 -1711.01 -1714.61 -1709.66 
Q(20) 38.7892 38.0908 38.2406 37.0505 35.625 37.3773 36.3840 36.5826 
Q2(20) 17.7525 20.1930 19.1555 20.5418 21.6192 23.8263 22.8130 23.886 
P(50) 66.6850 39.4004 39.5791 40.5621 51.1072 64.0652 50.6604 44.0474 
P-Val  (0.0471) (0.0834) (0.0829) (0.0799) (0.0390) (0.0728) (0.0407) (0.0673) 
P-Val [0.0152] [0.0628] [0.0620] [0.0534] [0.0214] [0.0202] [0.0196] [0.0384] 
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Table 19.  Post-estimation Statistics for Sub-sample 2 Using GJR 
 

HFI EFGI  
Normal Stud-t GED Skew-t Normal Stud-t GED Skewed-t 

AIC 3.0093 2.9754 2.9846 2.9724 3.0862 3.0660 3.0730 3.0653 
BIC 3.0362 3.0068 3.0160 3.0083 3.1101 3.0964 3.1044 3.0912 
LL -1677.73 -1657.74 -1662.93 -1655.079 -1720.77 -1708.45 -1712.35 -1707.09 
Q(20) 40.9358 43.9911 43.6063 43.3402 38.9075 41.8335 40.3427 41.5144 
Q2(20) 18.5805 20.9786 19.9843 21.5452 22.3666 24.0072 23.3187 24.2280 
P(50) 49.4093 27.5147 34.2172 41.7239 56.0223 48.1582 48.4263 40.2046 
P-Val  (0.0456) (0.0994) (0.0946) (0.0760) (0.0228) (0.0507) (0.0496) (0.0810) 
P-Val [0.0232] [0.0958] [0.0797] [0.0439] [0.0087] [0.0237] [0.0229] [0.0505] 

 
Table 20.  Post-estimation Statistics for Sub-sample 2 Using APARCH 

 
HFI EFGI  

Normal Stud-t GED Skew-t Normal Stud-t GED Skewed-t 
AIC 3.0087 2.9767 2.9854 2.9735 3.0876 3.0678 3.0746 3.0671 
BIC 3.3017 3.0126 3.0212 3.0139 3.1190 3.1037 3.1105 3.1005 
LL -1676.41 -1657.50 -1662.33 -1654.70 -1720.52 -1708.45 -1712.28 -1707.08 
Q(20) 39.7497 43.7125 42.8182 42.9835 38.8009 41.8408 40.2542 41.5002 
Q2(20) 18.0303 20.6143 19.4103 21.4203 22.1063 24.0410 23.1316 24.1888 
P(50) 60.9374 37.0769 43.0643 48.9625 54.3244 46.1921 45.5666 43.4218 
P-Val  (0.1178) (0.0894) (0.0711) (0.0476) (0.0278) (0.0587) (0.0613) (0.0697) 
P-Val (0.0294) [0.0645] [0.0382] [0.0156] [0.0096] [0.0266] [0.0287] [0.0327] 

 
Tables 18-20 compare post estimation statistics across distributions for the specifications that converged with 

the first sub-sample series. AIC, BIC are the Akaike and Schwartz information criteria. LL, is the log likelihood value. 
Q(20) and Q2(20) are respectively the Box-Pierce statistic at lag 20 of the standardized and squared standardized 
residuals. P(50) is the Pearson Goodness-of-fit with 50 cells.  P-values of the non-adjusted and adjusted test are given 
respectively in parentheses and brackets. The period investigated is from February 2, 1997 to Dec 31, 2001.   

 
 
 
 
 
 
 

 


